Empowering African Healthcare: Digital Innovations Making a Difference

Apr 11, 2025

Background 

Africa faces a dual burden of infectious and chronic diseases that threaten its strained health systems.[1] While malaria, HIV/AIDS, and tuberculosis remain prevalent, noncommunicable diseases like cancer,  diabetes, and cardiovascular conditions are on the rise.[2] [3] Despite these challenges, Africa has emerged  as a hub for digital innovation in healthcare over the past decade. Digital health technologies, including  electronic health records (EHRs), mobile health (mHealth), telemedicine, and artificial intelligence (AI),  are offering transformative solutions to tackle health challenges by improving access to care and  advancing equity.[4] This article explores how these technologies are being leveraged to strengthen  African health systems and discusses strategies for their successful adoption to advance universal health coverage. 


Electronic Health Records 

EHRs are revolutionizing healthcare delivery by streamlining data management and improving patient  care. EHR implementation, for example, in rural Uganda, led to a significant increase in efficiency, with  a 45% boost in patient visits and a 38% rise in prescription dispensing per physician per hour. These  systems also optimized workflows and patient care processes.[5] Open-source EHR systems, such as OpenMRS, initially developed for HIV care, have emerged as  powerful tools in this space. Their impact was particularly evident during the COVID-19 pandemic in  Rwanda, where OpenMRS played a crucial role in supporting an effective response and recovery effort.[6] Furthermore, OpenMRS has proven highly scalable, significantly improving healthcare access across  numerous developing countries.[6] By facilitating better follow-up care for HIV patients, it has enhanced  informed decision-making and supported research efforts throughout many African countries.[7] 


Mobile Health 

mHealth interventions, primarily using text or voice message reminders leveraging the rapid growth of  mobile phone usage across the continent, have also demonstrated potential to enhance patient  monitoring, medication adherence, and communication, particularly in rural areas. These interventions  have been shown to positively impact antenatal care (ANC) attendance, postnatal care (PNC) utilization,  and childhood immunization rates. Meta-analyses indicate that mHealth significantly increases the  likelihood of attending four or more ANC visits, receiving tetanus toxoid immunizations, adhering to  iron supplementation, and attending PNC appointments compared to standard care.[8] Furthermore, they  have been shown in systematic reviews and meta-analyses of randomized controlled trials to improve  clinical outcomes for diabetes and hypertension management compared to conventional care across countries with different levels of economic development.[9] Some studies report measurable health  improvements, including reductions in blood pressure and glycemic control, with average HbA1c  reductions of 0.8% for type 2 diabetes and 0.3% for type 1 diabetes over 12 months.[10] [11] 


Telemedicine 

Complementing EHRs and mHealth, telemedicine has shown promise in addressing geographical  barriers in Africa, such as improving access to specialist care in rural areas and alleviating the shortage  of health professionals. It also played a crucial role during infectious pandemics like COVID-19 by  maintaining healthcare services while minimizing the risk of infection.[12] Successful initiatives include  tele-education programs, such as Project ECHO, which has enabled remote training for healthcare  providers in isolated areas, enhancing providers’ skills, confidence, and knowledge while also  improving patient outcomes and healthcare system efficiency. [13] Other tele-health projects on the  continent include ophthalmology services linking South African hospitals with England and  asynchronous telehealth, also known as “store-and- forward,” in Angola and the Democratic Republic  of Congo.[14] [15] 


Artificial Intelligence and Data Analytics 

As telemedicine bridges access gaps, AI and data analytics emerge as potentially powerful tools to  optimize diagnostics and disease prediction while addressing challenges such as limited resources and  infrastructure. Although their applications are still in the early stages within the African healthcare  system, there is promising evidence of their potential. For example, AI-powered systems in low-resource settings have demonstrated high accuracy in detecting TB from chest X-rays, with one study reporting  85% accuracy compared to 62% for radiologists without AI assistance.[16] Additionally, in rural Kenyan  clinics, AI-powered smartphone accessories have been tested for cervical cancer screening.[17] Data analytics has also shown the potential to enhance public health by aggregating patient data and  enabling authorities to identify disease patterns and track outbreaks. For example, WHO data analyzed  using machine learning highlighted the relationship between climate variables and malaria risk, enabling  predictive modelling of malaria incidence. Similarly, research on past Ebola outbreaks trained ML  algorithms to predict patient outcomes with high accuracy, offering the potential to improve clinical decision-making in future out-breaks.[18] 


Charting the Path to Digital Health Success in Africa 

The successful implementation of EHRs and other digital health solutions requires addressing key  organizational, human, and technological factors. Strong leadership, end-user involvement, and  adequate training are crucial organizational elements.[19] Engaging stakeholders, addressing unmet needs, and considering individual skills and perceptions are essential human factors.[20] Technological factors,  such as usability, interoperability, and adaptability, are also key to success, alongside robust infrastructure, sustainable funding, and alignment with healthcare policies.[19] [20] Public-private partnerships can play a transformative role by pooling resources and expertise to enhance infrastructure, train healthcare professionals, and scale digital solutions effectively.[21] Policymakers  can adopt internationally recognized standards like GDPR and HIPAA to establish robust regulatory  environments prioritizing data protection, privacy, and ethical practices. Additionally, implementing  tight controls over data access, using encryption, and ensuring secure data storage through approaches such as blockchain technology can safeguard patient information while fostering public trust in digital health initiatives.[22] Governments and healthcare organizations should collaborate to establish regulatory frameworks that facilitate telemedicine, AI integration, and secure data management.

Stakeholders should prioritize building inclusive datasets and involving local researchers in AI  model development to enhance the relevance and fairness of algorithms.[23] Interoperability frameworks,  such as FHIR, are essential for seamless data exchange among stakeholders.[24] Equitable access to digital  health interventions requires considering demographic diversity, cultural sensitivities, literacy levels, and  language preferences through user-centered design.[25] Pilot testing projects in select regions before scaling nationwide is an essential strategy for ensuring acceptability and success.[23] National policies must prioritize infrastructure development, especially reliable internet connectivity, as it is paramount  for widespread adoption.[26] Capacity building through targeted training programs for healthcare  professionals and policymakers is critical to developing the skills necessary for sustainable  implementation.[27] Policymakers and healthcare organizations should advocate for open-source AI  solutions and EHR systems and foster partnerships with technology providers to reduce costs and  improve access.[28] [29] 


Conclusion 

Digital health innovations are transforming African healthcare by improving access, quality, and equity.  Technologies like EHRs, mHealth, telemedicine, and AI bridge critical gaps and support universal health  coverage. Overcoming challenges related to infrastructure, digital literacy, and regulatory frameworks  requires collaboration among stakeholders, robust policies, and sustainable investments. By aligning  digital solutions with local needs and fostering collaboration among stakeholders, Africa can accelerate  its journey toward a digitally enabled and healthier future. 


References 

[1] Impouma, B., Kalu, A. A., Makubalo, L., Gasasira, A., Cabore,  J., & Moeti, M. (2023). Responding to Africa’s  burden of disease: accelerating progress. Epidemiology & Infection, 151, e114. 

[2] Oleribe, O. O., Momoh, J., Uzochukwu, B. S., Mbofana, F., Adebiyi, A., Barbera, T., ... & Taylor-Robinson, S. D.  (2019).  Identifying  key  challenges  facing  healthcare  systems  in  Africa  and  potential  solutions. International journal of general medicine, 395-403. 

[3] Mwamba, M., Lombe, D. C., Msadabwe, S., Bond, V., Simwinga, M., Ssemata, A. S., ... & Aggarwal, A. (2023).  A  narrative  synthesis  of literature  on  the  barriers  to  timely  diagnosis and  treatment  of  cancer in  sub-Saharan Africa. Clinical Oncology, 35(9), e537-e548.  

[4] Holst, C., Sukums, F., Radovanovic, D., Ngowi, B., Noll, J., & Winkler, A. S. (2020). Sub-Saharan Africa—the  new breeding ground for global digital health. The Lancet Digital Health, 2(4), e160-e162. 

[5] Maarsingh,  H.,  Oyler,  K.,  Tuhaise,  G.,  Sourial,  M.,  Nornoo,  A.  O.,  Moses,  W.,  &  Rhodes,  L.  A.  (2022).  Implementing  electronic  health  records  on  a  medical  service  trip  improves  the  patient  care  process. Frontiers in Health Services, 2, 960427.  

[6] Paton, C., Braa, J., Muhire, A., Marco-Ruiz, L., Kobayashi, S., Fraser, H., ... & Marcelo, A. (2022). Open-source  digital  health  software  for  resilient,  accessible  and  equitable  healthcare  systems. Yearbook  of  Medical  Informatics, 31(01), 067-073.  

[7] Akanbi, M. O., Ocheke, A. N., Agaba, P. A., Daniyam, C. A., Agaba, E. I., Okeke, E. N., & Ukoli, C. O. (2012).  Use of electronic health records in sub-Saharan Africa: progress and challenges. Journal of Medicine  in the Tropics, 14(1), 1. 

[8]Kant, R., Yadav, P., Kishore, S., Barnwal, S., Kumar, R., & Khapre, M. (2020). Impact of mHealth interventions  on antenatal and postnatal care utilization in low and middle-income countries: A Systematic Review and  Meta-Analysis. medRxiv, 2020-12. 

[9]Mao,  Y.,  Lin,  W.,  Wen,  J.,  &  Chen,  G.  (2020).  Impact  and  efficacy  of  mobile  health  intervention  in  the  management  of  diabetes  and  hypertension:  a  systematic  review  and meta-analysis. BMJ Open Diabetes  Research and Care, 8(1), e001225. 

[10] Kitsiou, S., Paré, G., Jaana, M., & Gerber, B. (2017). Effectiveness of mHealth interventions for patients with  diabetes: an overview of systematic reviews. PloS one, 12(3), e0173160.  

[11] Marcolino, M. S., Oliveira, J. A. Q., D'Agostino, M., Ribeiro, A. L., Alkmim, M. B. M., & Novillo-Ortiz, D. (2018).  The  impact  of  mHealth  interventions:  systematic  review  of  systematic  reviews. JMIR  mHealth  and  uHealth, 6(1), e8873. 

[12] Mogessie, Y. G., Ntacyabukura, B., Mengesha, D. T., Musa, M. B., Wangari, M. C., Claude, N., ... & Lucero-Prisno  III,  D.  E.  (2021).  Digital  health  and  COVID-19:  challenges  of  use  and  implementation  in  sub-Saharan  Africa. Pan African Medical Journal, 38(1). 

[13] Osei-Twum, J. A., Wiles, B., Killackey, T., Mahood, Q., Lalloo, C., & Stinson, J. N. (2022). Impact of Project  ECHO on patient and community health outcomes: a scoping review. Academic Medicine, 97(9), 1393- 1402. 

[14] Mars, M. (2019). Telemedicine in sub-Saharan Africa. Telehealth in the Developing World. 

[15] Geissbuhler, A., Ly, O., Lovis, C., & L’Haire,  J. F. (2003). Telemedicine in Western Africa: lessons learned  from  a  pilot  project  in  Mali,  perspectives  and  recommendations.  In AMIA  Annual  Symposium  Proceedings (Vol. 2003, p. 249). American Medical Informatics Association. 

[16] Nijiati, M., Zhang, Z., Abulizi, A., Miao, H., Tuluhong, A., Quan, S., ... & Zou, X. (2021). Deep learning assistance  for tuberculosis diagnosis with chest radiography in low-resource settings. Journal of X-ray Science and  Technology, 29(5), 785-796. 

[17] Champlin,  C.,  Bell,  D.,  &  Schocken,  C.  (2017).  AI  medicine  comes  to  Africa's  rural  clinics. IEEE  Spectrum, 54(5), 42-48.  

[18] Etori,  N.,  Temesgen,  E.,  &  Gini,  M.  (2023).  What  we  know  so  far:  Artificial  intelligence  in  African  healthcare. arXiv preprint arXiv:2305.18302. 

[19] Fennelly, O., Cunningham, C., Grogan, L., Cronin, H., O’Shea, C., Roche, M., ... & O’Hare, N. (2020). Successfully  implementing a national electronic health record: a rapid umbrella review. International Journal of Medical  Informatics, 144, 104281. 

[20] Labrique, A. B., Wadhwani, C., Williams, K. A., Lamptey, P., Hesp, C., Luk, R., & Aerts, A. (2018). Best practices  in scaling digital health in low and middle income countries. Globalization and health, 14, 1-8. 

[21] Boyarintsev, B. I., & Lants, V. R. (2019). Public-Private Partnership as a Tool of Health Infrastructure  Development in Digital Economy. Economics of Contemporary Russia, (4).  

[22] Towett, G., Snead, R. S., Marczika,  J., & Prada,  I.  (2024). Discursive  framework  for a multi-disease digital health passport in Africa: a perspective. Globalization and Health, 20(1), 64.  

[23] Tripathi,  S.,  Gabriel,  K.,  Dheer,  S.,  Parajuli,  A.,  Elahi,  A.,  Awan,  O.,  ...  &  Augustin,  A.  I.  (2023).  Dataset  Development Review. Journal of the American College of Radiology: JACR, S1546-1440. 

[24] Ayaz,  M.,  Pasha,  M.  F.,  Alzahrani,  M.  Y.,  Budiarto,  R.,  &  Stiawan,  D.  (2021).  The  Fast  Health  Interoperability  Resources  (FHIR)  standard:  systematic  literature  review  of  implementations,  applications, challenges and opportunities. JMIR medical informatics, 9(7), e21929. 

[25] Wilson,  S.,  Tolley,  C.,  Mc  Ardle,  R.,  Lawson,  L.,  Beswick,  E.,  Hassan,  N.,  ...  &  Slight,  S.  (2024).  Recommendations  to advance digital health equity: a systematic  review of qualitative studies. NPJ  digital medicine, 7(1), 173. 

[26] Atkinson,  R.  D.  (2009).  Policies  to  increase  broadband  adoption  at  home. Information  Technology  and  Innovation Foundation Policy Brief Available online: http://www. itif. org/files/2009-demand-side-policies.  pdf. 

[27] Wong, B., Buttigieg, S., & Vital Brito, D. (2021). Preparing the public health workforce  for digital health  futures:  The  case  for  digital  Health  training  &  capacity  building. European  Journal  of  Public  Health, 31(Supplement_3), ckab164-197.  

[28] Aminpour, F., Sadoughi, F., & Ahamdi, M. (2014). Utilization of open source electronic health record around  the  world:  a  systematic  review. Journal  of  research  in  medical  sciences:  the  official  journal  of  Isfahan  University of Medical Sciences, 19(1), 57.