• Harari, Gabriella M.
  • Lane, Nicholas D.
  • Wang, Rui
  • Crosier, Benjamin S.
  • Campbell, Andrew T.
  • Gosling, Samuel D.


Smartphones now offer the promise of collecting behavioral data unobtrusively, in situ, as it unfolds in the course of daily life. Data can be collected from the onboard sensors and other phone logs embedded in today’s off-the-shelf smartphone devices. These data permit fine-grained, continuous collection of people’s social interactions (e.g., speaking rates in conversation, size of social groups, calls, and text messages), daily activities (e.g., physical activity and sleep), and mobility patterns (e.g., frequency and duration of time spent at various locations). In this article, we have drawn on the lessons from the first wave of smartphone-sensing research to highlight areas of opportunity for psychological research, present practical considerations for designing smartphone studies, and discuss the ongoing methodological and ethical challenges associated with research in this domain. It is our hope that these practical guidelines will facilitate the use of smartphones as a behavioral observation tool in psychological science.


  1. Bakke E. A model and measure of mobile communication competence. Human Communication Research. 2010;36:348–371. doi: 10.1111/j.1468-2958.2010.01379.x. [CrossRef] [Google Scholar]
  2. Baumeister RF, Vohs KD, Funder DC. Psychology as the science of self-reports and finger movements: Whatever happened to actual behavior? Perspectives on Psychological Science. 2007;2:396–403. doi: 10.1111/j.1745-6916.2007.00051.x. [PubMed] [CrossRef] [Google Scholar]
  3. Ben-Zeev D, Brenner CJ, Begale M, Duffecy J, Mohr DC, Mueser KT. Feasibility, acceptability, and preliminary efficacy of a smartphone intervention for schizophrenia. Schizophrenia Bulletin. 2014;40:1244–1253. doi: 10.1093/schbul/sbu033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  4. Bernard HR, Killworth PD, Sailer L. Informant accuracy in social network data IV: A comparison of clique-level structure in behavioral and cognitive network data. Social Networks. 1980;2:191–218. doi: 10.1016/0378-8733(79)90014-5. [CrossRef] [Google Scholar]
  5. Bernard HR, Killworth PD, Sailer L. Informant accuracy in social-network data V. An experimental attempt to predict actual communication from recall data. Social Science Research. 1982;11:30–66. doi: 10.1016/0049-089X(82)90006-0. [CrossRef] [Google Scholar]
  6. Boase J. Implications of software-based mobile media for social research. Mobile Media & Communication. 2013;1:57–62. doi: 10.1177/2050157912459500. [CrossRef] [Google Scholar]
  7. Boase J, Ling R. Measuring mobile phone use: Self-report versus log data. Journal of Computer-Mediated Communication. 2013;18:508–519. doi: 10.1111/jcc4.12021. [CrossRef] [Google Scholar]
  8. Brown J, Broderick AJ, Lee N. Word of mouth communication within online communities: Conceptualizing the online social network. Journal of Interactive Marketing. 2007;21(3):2–20. doi: 10.1002/dir.20082. [CrossRef] [Google Scholar]
  9. Campbell AT, Lane ND. Smartphone sensing: A game changer for behavioral science. Workshop held at the Summer Institute for Social and Personality Psychology; Davis: The University of California; 2013. Jul, [Google Scholar]
  10. Case MA, Burwick HA, Volpp KG, Patel MS. Accuracy of smartphone applications and wearable devices for tracking physical activity data. Journal of the American Medical Association. 2015;313:625–626. doi: 10.1001/jama.2014.17841. [PubMed] [CrossRef] [Google Scholar]
  11. Chen Z, Chen Y, Hu L, Wang S, Jiang X, Ma X, … Campbell AT. ContextSense: Unobtrusive discovery of incremental social context using dynamic Bluetooth data. In: Brush AJ, Friday A, editors. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct publication; New York, NY: Association for Computing Machinery; 2014. pp. 23–26. [CrossRef] [Google Scholar]
  12. Chen Z, Lin M, Chen F, Lane ND, Cardone G, Wang R, … Campbell AT. Unobtrusive sleep monitoring using smartphones. 2013 7th International Conference on Pervasive Computing Technologies for Healthcare: PervasiveHealth ’13; Brussels, Belgium: Institute for Computer Sciences, Social-Informatics, and Telecommunications Engineering; 2013. pp. 145–152. [Google Scholar]
  13. Chittaranjan G, Blom J, Gatica-Perez D. Who’s who with Big-Five: Analyzing and classifying personality traits with smartphones. In: Lyons K, Smailagic A, Kenn H, editors. Wearable Computers (ISWC): 2011 15th Annual International Symposium. Piscataway, NJ: Institute of Electrical and Electronics Engineers; 2011. pp. 29–36. [CrossRef] [Google Scholar]
  14. Choudhury T, Basu S. Modeling conversational dynamics as a mixed-memory Markov process. In: Saul LK, Weiss Y, Bottou L, editors. Advances in neural information processing systems. Vol. 17. Cambridge, MA: MIT Press; 2004. pp. 281–288. [Google Scholar]
  15. Craik KH. The lived day of an individual: A person-environment perspective. In: Walsh WB, Craik KH, Price RH, editors. Person-environment psychology: New directions and perspectives. Mahwah, NJ: Erlbaum; 2000. pp. 233–266. [Google Scholar]
  16. de Montjoye YA, Quoidbach J, Robic F, Pentland AS. Predicting personality using novel mobile phone-based metrics. In: Greenberg AM, Kennedy WG, Bos ND, editors. SBP ’13: Proceedings of the 6th International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction. Berlin, Germany: Springer; 2013. pp. 48–55. [CrossRef] [Google Scholar]
  17. de Montjoye YA, Shmueli E, Wang SS, Pentland AS. openPDS: Protecting the privacy of metadata through SafeAnswers. PLoS ONE. 2014;9:e98790. doi: 10.1371/journal.pone.0098790. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  18. Eagle N, Pentland AS, Lazer D. Inferring friendship network structure by using mobile phone data. PNAS: Proceedings of the National Academy of Sciences of the United States of America. 2009;106:15274–15278. doi: 10.1073/pnas.0900282106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  19. Farrahi K, Gatica-Perez D. What did you do today? Discovering daily routines from large-scale mobile data. In: El Saddik A, Vuong S, editors. Proceedings of the 16th ACM International Conference on Multimedia; New York, NY: Association for Computing Machinery; 2008. pp. 849–852. [CrossRef] [Google Scholar]
  20. Funder DC. Towards a resolution of the personality triad: Persons, situations, and behaviors. Journal of Research in Personality. 2006;40:21–34. doi: 10.1016/j.jrp.2005.08.003. [CrossRef] [Google Scholar]
  21. Furr RM. Personality psychology as a truly behavioural science. European Journal of Personality. 2009;23:369–401. doi: 10.1002/per.724. [CrossRef] [Google Scholar]
  22. Gardy JL, Johnston JC, Sui SJH, Cook VJ, Shah L, Brodkin E, Varhol R. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. New England Journal of Medicine. 2011;364:730–739. [PubMed] [Google Scholar]
  23. Gosling SD, John OP, Craik KH, Robins RW. Do people know how they behave? Self-reported act frequencies compared with on-line codings by observers. Journal of Personality and Social Psychology. 1998;74:1337–1349. [PubMed] [Google Scholar]
  24. Gosling SD, Mason W. Internet research in psychology. Annual Review of Psychology. 2015;66:877–902. doi: 10.1146/annurev-psych-010814-015321. [PubMed] [CrossRef] [Google Scholar]
  25. Harari GM, Gosling SD, Wang R, Campbell A. Capturing situational information with smartphones and mobile sensing methods. European Journal of Personality. 2015;29:509–511. doi: 10.1002/per.2032. [CrossRef] [Google Scholar]
  26. Henrich J, Heine SJ, Norenzayan A. The weird-est people in the world? Behavioral & Brain Sciences. 2010;33:61–83. doi: 10.1017/S0140525X0999152X. [PubMed] [CrossRef] [Google Scholar]
  27. International Data Corp. Smartphone OS market share, Q1 2015. 2015 Retrieved from
  28. Kobayashi T, Boase J. No such effect? The implications of measurement error in self-report measures of mobile communication use. Communication Methods and Measures. 2012;6(2):126–143. doi: 10.1080/19312458.2012.679243. [CrossRef] [Google Scholar]
  29. Kosinski M, Matz SC, Gosling SD, Popov V, Stillwell D. Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. American Psychologist. 2015;70:543–556. doi: 10.1037/a0039210. [PubMed] [CrossRef] [Google Scholar]
  30. Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT. A survey of mobile phone sensing. IEEE Communications Magazine. 2010;48(9):140–150. doi: 10.1109/MCOM.2010.5560598. [CrossRef] [Google Scholar]
  31. Lane ND, Mohammod M, Lin M, Yang X, Lu H, Ali S, … Campbell A. Bewell: A smartphone application to monitor, model and promote wellbeing. In: Maitland J, Augusto JC, Caulfield B Chairs, editors. 5th International ICST Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth); Gent, Belgium: Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; 2011. pp. 23–26. [Google Scholar]
  32. Lathia N, Pejovic V, Rachuri KK, Mascolo C, Musolesi M, Rentfrow PJ. Smartphones for large-scale behavior change interventions. IEEE Pervasive Computing. 2013;12:66–73. doi: 10.1109/MPRV.2013.56. [CrossRef] [Google Scholar]
  33. Lathia N, Rachuri KK, Mascolo C, Rentfrow PJ. Contextual dissonance: Design bias in sensor-based experience sampling methods. In: Mattern F, Santini S, editors. Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing; New York, NY: Association for Computing Machinery; 2013. pp. 183–192. [Google Scholar]
  34. Lee S, Konrath S, Himle J, Bennett D. Positive technology: Utilizing mobile devices for psychosocial intervention. Conference at the University of Michigan Institute for Social Research; 2015. Mar, Retrieved from [Google Scholar]
  35. LiKamWa R, Liu Y, Lane ND, Zhong L. Moodscope: Building a mood sensor from smartphone usage patterns. In: Chu HH, Huang P, Choudhury RR, Zhao F Chairs, editors. Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services; New York, NY: Association for Computing Machinery; 2013. pp. 389–402. [CrossRef] [Google Scholar]
  36. Lu H, Frauendorfer D, Rabbi M, Mast MS, Chittaranjan GT, Campbell AT, … Choudhury T. Stress-Sense: Detecting stress in unconstrained acoustic environments using smartphones. In: Dey AL, Chu HH, Hayes G Chairs, editors. Proceedings of the 2012 ACM Conference on Ubiquitous Computing; New York, NY: Association for Computing Machinery; 2012. pp. 351–360. [CrossRef] [Google Scholar]
  37. Madden M, Rainie L. Americans’ attitudes about privacy, security, and surveillance. 2015 Retrieved from Pew Research Center website:
  38. Mascolo C, Rentfrow PJ. Social sensing: Mobile sensing meets social science. Workshop held; Cambridge, England: University of Cambridge; 2011. [Google Scholar]
  39. Mast MS, Gatica-Perez D, Frauendorfer D, Nguyen L, Choudhury T. Social sensing for psychology: Automated interpersonal behavior assessment. Current Directions in Psychological Science. 2015;24:154–160. doi: 10.1177/0963721414560811. [CrossRef] [Google Scholar]
  40. Mehl MR, Gosling SD, Pennebaker JW. Personality in its natural habitat: Manifestations and implicit folk theories of personality in daily life. Journal of Personality and Social Psychology. 2006;90:862–877. doi: 10.1037/0022-3514.90.5.862. [PubMed] [CrossRef] [Google Scholar]
  41. Mehl MR, Pennebaker JW. The sounds of social life: A psychometric analysis of students’ daily social environments and natural conversations. Journal of Personality and Social Psychology. 2003;84:857–870. doi: 10.1037/0022-3514.84.4.857. [PubMed] [CrossRef] [Google Scholar]
  42. Mehl MR, Pennebaker JW, Crow DM, Dabbs J, Price JH. The Electronically Activated Recorder (EAR): A device for sampling naturalistic daily activities and conversations. Behavior Research Methods, Instruments, & Computers. 2001;33:517–523. [PubMed] [Google Scholar]
  43. Miller G. The smartphone psychology manifesto. Perspectives on Psychological Science. 2012;7:221–237. doi: 10.1177/1745691612441215. [PubMed] [CrossRef] [Google Scholar]
  44. Miluzzo E, Lane ND, Fodor K, Peterson R, Lu H, Musolesi M, … Campbell AT. Sensing meets mobile social networks: The design, implementation and evaluation of the CenceMe application. In: Abdelzahar T, Martonosi M, Wolisz A, editors. Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems; New York, NY: Association for Computing Machinery; 2008. pp. 337–350. [CrossRef] [Google Scholar]
  45. Morris ME, Aguilera A. Mobile, social, and wearable computing and the evolution of psychological practice. Professional Psychology: Research and Practice. 2012;43:622–626. doi: 10.1037/a0029041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  46. Paulhus DL, Vazire S. The self-report method. In: Robins RW, Fraley RC, Kruger RF, editors. Handbook of research methods in personality psychology. New York, NY: Guilford; 2007. pp. 224–239. [Google Scholar]
  47. Pejovic V, Lathia N, Mascolo C, Musolesi M. Mobile-based experience sampling for behaviour research. 2015 Retrieved from https://arxivorg/pdf/1508.03725.pdf.
  48. Pew Research Center. Cell phone and smartphone ownership demographics. Washington, DC: Author; 2014. Retrieved from [Google Scholar]
  49. Pew Research Center. Internet seen as positive influence on education but negative influence on morality in emerging and developing nations. Washington, DC: Author; 2015. Retrieved from [Google Scholar]
  50. Rabbi M, Ali S, Choudhury T, Berke E. Passive and in-situ assessment of mental and physical well-being using mobile sensors. In: Landay J, Shi Y, Patterson DJj, Rogers Y, Xie X Chairs, editors. Proceedings of the 13th International Conference on Ubiquitous Computing; New York, NY: Association for Computing Machinery; 2011. pp. 385–394. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  51. Rachuri KK, Musolesi M, Mascolo C, Rentfrow PJ, Longworth C, Aucinas A. EmotionSense: A mobile phones based adaptive platform for experimental social psychology research. In: Bardram J, Langheinrich M Chairs, editors. Proceedings of the 12th ACM International Conference on Ubiquitous Computing; New York, NY: Association for Computing Machinery; 2010. pp. 281–290. [CrossRef] [Google Scholar]
  52. Reddy S, Mun M, Burke J, Estrin D, Hansen M, Srivastava M. Using mobile phones to determine transportation modes. ACM Transactions on Sensor Networks (TOSN) 2010;6(2) doi: 10.1145/1689239.1689243. Article 13. [CrossRef] [Google Scholar]
  53. Reis HT, Gosling SD. Social psychological methods outside the laboratory. In: Fiske ST, Gilbert DT, Lindzey G, editors. Handbook of social psychology. 5. Vol. 1. New York, NY: Wiley; 2010. pp. 82–114. [Google Scholar]
  54. Rentfrow PJ, Gosling SD. Using smart-phones as mobile sensing devices: A practical guide for psychologists to current and potential capabilities. Preconference for the annual meeting of the Society for Personality and Social Psychology; San Diego, CA. 2012. Jan, [Google Scholar]
  55. Saeb S, Zhang M, Karr CJ, Schueller SM, Corden ME, Kording KP, Mohr DC. Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: An exploratory study. Journal of Medical Internet Research. 2015;17(7):e175. doi: 10.2196/jmir.4273. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  56. Sandstrom GM, Lathia N, Mascolo C, Rentfrow PJ. Putting mood in context: Using smartphones to examine how people feel in different locations. Journal of Research in Personality. doi: 10.1016/j.jrp.2016.06.004. in press. [CrossRef] [Google Scholar]
  57. Smith A. Smartphone ownership: 2013 update. Washington, DC: Pew Research Center; 2013. Retrieved from [Google Scholar]
  58. Stisen A, Blunck H, Bhattacharya S, Prentow TS, Kjærgaard MB, Dey A, Jensen MM. Smart devices are different: Assessing and mitigating mobile sensing heterogeneities for activity recognition. In: Song J, Abdelzahar T, Mascolo C Chairs, editors. Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (SenSys); New York, NY: Association for Computing Machinery; 2015. pp. 127–140. [CrossRef] [Google Scholar]
  59. Wang R, Chen F, Chen Z, Li T, Harari G, Tignor S, Campbell AT. Studentlife: Assessing mental health, academic performance and behavioral trends of college students using smartphones. In: Brush A, Friday A, Kientz J, Scott J, Song J Chairs, editors. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing; New York, NY: Association for Computing Machinery; 2014. pp. 3–14. [Google Scholar]
  60. Wang R, Harari GM, Hao P, Zhou X, Campbell A. SmartGPA: How smartphones can assess and predict academic performance of college students. In: Mase K, Langheinrich M, Gatica-Perez D, Gellersen H, Choudhury T, Yatani K Chairs, editors. Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing; New York, NY: Association for Computing Machinery; 2015. pp. 295–306. [CrossRef] [Google Scholar]
  61. Wrzus C, Brandmaier AM, von Oertzen T, Müller V, Wagner GG, Riediger M. A new approach for assessing sleep duration and postures from ambulatory accelerometry. PLoS ONE. 2012;7:e48089. doi: 10.1371/journal.pone.0048089. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  62. Wrzus C, Mehl MR. Lab and/or field? Measuring personality processes and their social consequences. European Journal of Personality. 2015;29:250–271. doi: 10.1002/per.1986. [CrossRef] [Google Scholar]
  63. Yarkoni T. Psychoinformatics: New horizons at the interface of the psychological and computing sciences. Current Directions in Psychological Science. 2012;21:391–397. [Google Scholar]
The SELF Institute