• Geoff Appelboom
  • Elvis Camacho
  • Mickey E Abraham
  • Samuel S Bruce
  • Emmanuel LP Dumont



Innovations in mobile and electronic healthcare are revolutionizing the involvement of both doctors and patients in the modern healthcare system by extending the capabilities of physiological monitoring devices. Despite significant progress within the monitoring device industry, the widespread integration of this technology into medical practice remains limited. The purpose of this review is to summarize the developments and clinical utility of smart wearable body sensors.


We reviewed the literature for connected device, sensor, trackers, telemonitoring, wireless technology and real time home tracking devices and their application for clinicians.


Smart wearable sensors are effective and reliable for preventative methods in many different facets of medicine such as, cardiopulmonary, vascular, endocrine, neurological function and rehabilitation medicine. These sensors have also been shown to be accurate and useful for perioperative monitoring and rehabilitation medicine.


Although these devices have been shown to be accurate and have clinical utility, they continue to be underutilized in the healthcare industry. Incorporating smart wearable sensors into routine care of patients could augment physician-patient relationships, increase the autonomy and involvement of patients in regards to their healthcare and will provide for novel remote monitoring techniques which will revolutionize healthcare management and spending.



Ricciardi L, Mostashari F, Murphy J, Daniel JG, Siminerio EP: A national action plan to support consumer engagement via e-health. Health Aff (Millwood). 2013, 32: 376-84. 10.1377/hlthaff.2012.1216.

Article  Google Scholar  2.

Say R, Murtagh M, Thomson R: Patients’ preference for involvement in medical decision making: a narrative review. Patient Educ Couns. 2006, 60 (2): 102-114. 10.1016/j.pec.2005.02.003.

Article  PubMed  Google Scholar  3.

Hayakawa M, Uchimura Y, Omae K, Waki K, Fujita H, Ohe K: A smartphone-based medication self-management system with realtime medication monitoring. Appl Clin Inform. 2013, 4: 37-52. 10.4338/ACI-2012-10-RA-0045.

CAS  Article  PubMed  PubMed Central  Google Scholar  4.

Swan M: Emerging patient-driven health care models: an examination of health social networks, consumer personalized medicine and quantified self-tracking. Int J Environ Res Public Health. 2009, 6: 492-525. 10.3390/ijerph6020492.

Article  PubMed  PubMed Central  Google Scholar  5.

Chen KY, Bassett DR: The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005, 37: S490-S500. 10.1249/01.mss.0000185571.49104.82.

Article  PubMed  Google Scholar  6.

Dobkin BH, Dorsch A: The promise of mHealth: daily activity monitoring and outcome assessments by wearable sensors. Neurorehabil Neural Repair. 2011, 25 (9): 788-798. 10.1177/1545968311425908.

Article  PubMed  PubMed Central  Google Scholar  7.

Darwish A, Hassanien AE: Wearable and Implantable wireless sensor network solutions for healthcare monitoring. Sensors. 2011, 11 (6): 5561-5595.

Article  PubMed  PubMed Central  Google Scholar  8.

CDC—chronic disease prevention and health promotion. []9.

Bonato P: Advances in wearable technology and its medical applications. Conf Proc IEEE Eng Med Biol Soc. 2010, 2010: 2021-2024.

PubMed  Google Scholar  10.

Cook DJ, Thompson JE, Prinsen SK, Dearani JA, Deschamps C: Functional recovery in the elderly after major surgery: assessment of mobility recovery using wireless technology. Ann Thorac Surg. 2013, 96: 1057-61. 10.1016/j.athoracsur.2013.05.092.

Article  PubMed  Google Scholar  11.

Yang C-C, Hsu Y-L: A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 2010, 10 (8): 7772-7788. 10.3390/s100807772.

Article  PubMed  PubMed Central  Google Scholar  12.

Chan M, Estève D, Fourniols J-Y, Escriba C, Campo E: Smart wearable systems: current status and future challenges. Artif Intell Med. 2012, 56 (3): 137-156. 10.1016/j.artmed.2012.09.003.

Article  PubMed  Google Scholar  13.

Mathie MJ, Coster ACF, Lovell NH, Celler BG: Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol Meas. 2004, 25: R1-R20. 10.1088/0967-3334/25/2/R01.

Article  PubMed  Google Scholar  14.

Luinge HJ, Veltink PH: Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Med Biol Eng Comput. 2005, 43: 273-282. 10.1007/BF02345966.

CAS  Article  PubMed  Google Scholar  15.

Yang C-C, Hsu Y-L: Development of a wearable motion detector for telemonitoring and real-time identification of physical activity. Telemed J E Health. 2009, 15: 62-72. 10.1089/tmj.2008.0060.

CAS  Article  PubMed  Google Scholar  16.

Montgomery-Downs HE, Insana SP, Bond JA: Movement toward a novel activity monitoring device. Sleep Breath. 2012, 16 (3): 913-917. 10.1007/s11325-011-0585-y.

Article  PubMed  Google Scholar  17.

Sekine M, Tamura T, Togawa T, Fukui Y: Classification of waist-acceleration signals in a continuous walking record. Med Eng Phys. 2000, 22: 285-291. 10.1016/S1350-4533(00)00041-2.

CAS  Article  PubMed  Google Scholar  18.

Karantonis DM, Narayanan MR, Mathie M, Lovell NH, Celler BG: Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer for Ambulatory Monitoring. 2006, 10: 156-167.

Google Scholar  19.

Simone LK, Sundarrajan N, Luo X, Jia Y, Kamper DG: A low cost instrumented glove for extended monitoring and functional hand assessment. J Neurosci Methods. 2007, 160: 335-348. 10.1016/j.jneumeth.2006.09.021.

Article  PubMed  Google Scholar  20.

Wu YC, Chen P-F, Hu ZA, Chang CH, Lee GC, Yu WC: A mobile health monitoring system using RFID ring-type pulse sensor [abstract]. Dependable, Autonomic and Secure Computing. 2009, 1: 317-

Google Scholar  21.

Rhoads FA, Grandner J: Assessment of an aural infrared sensor for body temperature measurement in children. Clin Pediatr (Phila). 1990, 29: 112-115. 10.1177/000992289002900209.

CAS  Article  Google Scholar  22.

Pandian PS, Mohanavelu K, Safeer KP, Kotresh TM, Shakunthala DT, Gopal P, Padaki VC: Smart vest: wearable multi-parameter remote physiological monitoring system. Med Eng Phys. 2008, 30: 466-477. 10.1016/j.medengphy.2007.05.014.

CAS  Article  PubMed  Google Scholar  23.

Sardini E, Serpelloni M: T-shirt for vital parameter monitoring. Lect Notes Electr Eng. 2014, 162: 201-205. 10.1007/978-1-4614-3860-1_35.

Article  Google Scholar  24.

Geoff A, Eric S, Pierre R, Yves J, Jean-Yves Reginster ESC: A critical assessment of approaches to outpatient monitoring. Curr Med Res Opin. 2014, 30: 1-2. 10.1185/03007995.2013.842165.

Article  Google Scholar  25.

Ton V-K, Martin SS, Blumenthal RS, Blaha MJ: Comparing the new European cardiovascular disease prevention guideline with prior American heart association guidelines: an editorial review. Clin Cardiol. 2013, 36: E1-6. 10.1002/clc.22079.

Article  PubMed  Google Scholar  26.

World Health Organization: []27.

Fuster V, Kelly B: Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health. 2010

Google Scholar  28.

Chandrasekara V: Measuring Vital Signs Using Smart Phones. 2010, Denton, Texas: University of North Texas

Google Scholar  29.

Weber S, Scharfschwerdt P, Seel T, Kertzscher U, Affeld K: Continuous wrist blood pressure measurement with ultrasound. Biomed Tech. 2013, 58: 1-2.

Google Scholar  30.

Scheffler M, Hirt E: Wearable devices for telemedicine applications. J Telemed Telecare. 2005, 11 (Suppl 1): 11-14.

Article  PubMed  Google Scholar  31.

Lindemann U, Hock A, Stuber M, Keck W, Becker C: Evaluation of a fall detector based on accelerometers: a pilot study. Med Biol Eng Comput. 2005, 43: 548-551. 10.1007/BF02351026.

CAS  Article  PubMed  Google Scholar  32.

Kuo Y-L, Culhane KM, Thomason P, Tirosh O, Baker R: Measuring distance walked and step count in children with cerebral palsy: an evaluation of two portable activity monitors. Gait Posture. 2009, 29: 304-310. 10.1016/j.gaitpost.2008.09.014.

Article  PubMed  Google Scholar  33.

Lukowicz P, Anliker U, Ward J, Troster G, Hirt E, Neufelt C: AMON: a wearable medical computer for high risk patients. Proceedings Sixth Int Symp Wearable Comput. 2002, 133-134.

Chapter  Google Scholar  34.

Poon CCY, Zhang YT: Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time. Conf Proc IEEE Eng Med Biol Soc. 2005, 6: 5877-5880.

CAS  PubMed  Google Scholar  35.

Poon CCYPCCY, Wong YMWYM, Zhang Y-TZY-T: M-Health: the development of cuff-less and wearable blood pressure meters for use in body sensor networks. 2006 IEEE/NLM Life Sci Syst Appl Work. 2006, 1-2.

Chapter  Google Scholar  36.

Murata Manufacturing Company. []37.

Paul G, David A, Dwight Reynolds A: Accuracy and novelty of an inexpensive iPhone-based event recorder [abstract]. Heart Rhythm. 2012, sp23

Google Scholar  38.

Saxon LA: Ubiquitous wireless ECG recording: a powerful tool physicians should embrace. J Cardiovasc Electrophysiol. 2013, 24: 480-483. 10.1111/jce.12097.

Article  PubMed  Google Scholar  39.

Paton C, Hansen M, Fernandez-Luque L, YS L a: Self-Tracking, social media and personal health records for patient empowered self-care. contribution of the IMIA social media working group. Yearb Med Inform. 2012, 7: 16-24.

CAS  PubMed  Google Scholar  40.

Nagae D, Mase A: Measurement of heart rate variability and stress evaluation by using microwave reflectometric vital signal sensing. Rev Sci Instrum. 2010, 81: 094301-10.1063/1.3478017.

Article  PubMed  Google Scholar  41.

Dokhan B, Setz C, Arnrich B, Töster G: Monitoring passenger’s breathing – a feasibility study. Swiss Soc Biomed Eng Annu Meet. 2007, 1: 1-

Google Scholar  42.

Universal biosensors. []43.

Rao A, Hou P, Golnik T, Flaherty J, Vu S: Evolution of data management tools for managing self-monitoring of blood glucose results: a survey of iPhone applications. J diabetes Sci Technol. 2010, 4: 949-957. 10.1177/193229681000400426.

Article  PubMed  PubMed Central  Google Scholar  44.

Leelarathna L, English SW, Thabit H, Caldwell K, Allen JM, Kumareswaran K, Wilinska ME, Nodale M, Haidar A, Evans ML, Burnstein R, Hovorka R: Accuracy of subcutaneous continuous glucose monitoring in critically ill adults: improved sensor performance with enhanced calibrations. Diabetes Technol Ther. 2014, 16: 97-101. 10.1089/dia.2013.0221.

CAS  Article  PubMed  PubMed Central  Google Scholar  45.

Zanon M, Sparacino G, Facchinetti A, Riz M, Talary MS, Suri RE, Caduff A, Cobelli C: Non-invasive continuous glucose monitoring: improved accuracy of point and trend estimates of the multisensor system. Med Biol Eng Comput. 2012, 50 (10): 1047-1057. 10.1007/s11517-012-0932-6.

Article  PubMed  Google Scholar  46.

Kovatchev BP, Renard E, Cobelli C, Zisser HC, Keith-Hynes P, Anderson SM, Brown SA, Chernavvsky DR, Breton MD, Farret A, Pelletier M-J, Place J, Bruttomesso D, Del Favero S, Visentin R, Filippi A, Scotton R, Avogaro A, Doyle FJ: Feasibility of outpatient fully integrated closed-loop control: first studies of wearable artificial pancreas. Diabetes Care. 2013, 36: 1851-8. 10.2337/dc12-1965.

Article  PubMed  PubMed Central  Google Scholar  47.

Zhang J, Hodge W, Hutnick C, Wang X: Noninvasive diagnostic devices for diabetes through measuring tear glucose. J diabetes Sci Technol. 2011, 5: 166-172. 10.1177/193229681100500123.

Article  PubMed  PubMed Central  Google Scholar  48.

Forbes. []49.

Baram Y, Lenger R: Gait improvement in patients with cerebral palsy by visual and auditory feedback. Neuromodulation. 2012, 15: 48-52. 10.1111/j.1525-1403.2011.00412.x. discussion 52

Article  PubMed  Google Scholar  50.

Lockman J, Fisher RS, Olson DM: Detection of seizure-like movements using a wrist accelerometer. Epilepsy Behav. 2011, 20: 638-641. 10.1016/j.yebeh.2011.01.019.

Article  PubMed  Google Scholar  51.

Rand D, Eng JJ, Tang P-F, Jeng J-S, Hung C: How active are people with stroke?: use of accelerometers to assess physical activity. Stroke. 2009, 40: 163-168. 10.1161/STROKEAHA.108.523621.

Article  PubMed  Google Scholar  52.

Kirste T, Hoffmeyer A, Koldrack P, Bauer A, Schubert S, Schröder S, Teipel S: Detecting the effect of Alzheimer’s disease on everyday motion behavior. J Alzheimers Dis. 2014, 38: 121-32.

PubMed  Google Scholar  53.

Weiss A, Sharifi S, Plotnik M, van Vugt JPP, Giladi N, Hausdorff JM: Toward automated, at-home assessment of mobility among patients with Parkinson disease, using a body-worn accelerometer. Neurorehabil Neural Repair. 2011, 25 (9): 810-818. 10.1177/1545968311424869.

Article  PubMed  Google Scholar  54.

Jovanov E, Milenkovic A, Otto C, de Groen PC: A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. J Neuroeng Rehabil. 2005, 2: 6-10.1186/1743-0003-2-6.

Article  PubMed  PubMed Central  Google Scholar  55.

Bonnie S, Basia B, Kevin C, Catherine W, Jeff Coppersmith JH: Bodies in motion: monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease. J Rehabil Dev. 2003, 40: 45-10.1682/JRRD.2003.10.0045.

Article  Google Scholar  56.

Wagenaar RC, Sapir I, Zhang Y, Markovic S, Vaina LM, Little TDC: Continuous monitoring of functional activities using wearable, wireless gyroscope and accelerometer technology. Annu Int Conf IEEE Eng Med Biol Soc. 2011, 2011: 4844-4847.

Google Scholar  57.

Fulk G, Combs SA, Danks KA, Nirider CD, Bhavana Raja DSR: Accuracy of 2 activity monitors in detecting steps in people with stroke and traumatic brain injury. Phys Ther. 2014, 94: 222-229. 10.2522/ptj.20120525.

Article  PubMed  Google Scholar  58.

Bassett DR, John D: Use of pedometers and accelerometers in clinical populations: validity and reliability issues. Phys Ther Rev. 2010, 15 (3): 135-142. 10.1179/1743288X10Y.0000000004.

Article  Google Scholar  59.

Daniel Olguín O, Alex P: Social Sensors for Automatic Data Collection. Proceedings of the Fourteenth Americas Conference on Information Systems. 14-17 August 2008, Toronto, 14-

Google Scholar  60.

Morillo DS, Rojas Ojeda JL, Crespo Foix LF, Jiménez AL: An accelerometer-based device for sleep apnea screening. IEEE Trans Inf Technol Biomed. 2010, 14: 491-499.

Article  PubMed  Google Scholar  61.

Wicks P, Stamford J, Grootenhuis MA, Haverman L, Ahmed S: Innovations in e-health. Qual Life Res. 2014, 23: 195-203. 10.1007/s11136-013-0458-x.

Article  PubMed  Google Scholar  62.

Bergmann JHM, McGregor AH: Body-worn sensor design: what do patients and clinicians want?. Ann Biomed Eng. 2011, 39: 2299-2312. 10.1007/s10439-011-0339-9.

CAS  Article  PubMed  Google Scholar  63.

Bergmann JHM, Chandaria V, McGregor A: Wearable and implantable sensors: the patient’s perspective. Sensors (Basel). 2012, 12: 16695-709. 10.3390/s121216695.

Article  Google Scholar  64.

Chan M, Estève D, Escriba C, Campo E: A review of smart homes- present state and future challenges. Comput Methods Programs Biomed. 2008, 91: 55-81. 10.1016/j.cmpb.2008.02.001.

Article  PubMed  Google Scholar  65.

2014 medicare changes expand coverage for telemedicine. []66.

John Percival JH: Big brother or brave new world? Telecare and its implications for older people’s independence and social inclusion. Crit Soc Policy. 2006, 26: 888-909. 10.1177/0261018306068480.

Article  Google Scholar  67.

Steele R, Lo A, Secombe C, Wong YK: Elderly persons’ perception and acceptance of using wireless sensor networks to assist healthcare. Int J Med Inform. 2009, 78: 788-801. 10.1016/j.ijmedinf.2009.08.001.

The SELF Institute