• Myriam Fréjus
  • Julien Guibourdenche


This paper presents the results of an evaluation of an activity monitoring system for elderly care based on household electricity usage. We show that the interest of the elderly in the service does not derive from a desire to monitor their own activities, but that the system is above all seen as a tool for generating contacts with the family members or designated persons monitoring their activities remotely. Therefore, the quantified self here is a means for fostering collective interactions and stronger social ties within a framework where questions of privacy are not an obstacle with regards to data utilization.


  1. 1.Alaoui, M., Lewkowicz, M., Seffah, A.: Increasing elderly social relationships through TV-based services. In: HI 2012, Miami, Florida, USA, 28–30 January 2012Google Scholar
  2. 2.Albrechstlund, A.: Online Social Networking as Participatory Surveillance. First Monday 13(3) (2008).
  3. 3.Berenguer, M., Giordani, M., Giraud-By, F., Noury, N.: Automatic detection of activities of daily living from detecting and classifying electrical events on the residential power line. In: 10th International Conference on HealthCom, e-health Networking, Applications and Services, pp. 29–32 (2008)Google Scholar
  4. 4.Clément, S., Rolland, C., Thoer-Fabre, C.: Usages, normes, autonomie: analyse critique de la bibliographie concernant le vieillissement de la population. Plan Urbanisme Construction Architecture, PARIS (2007)Google Scholar
  5. 5.Dagiral, É., Dessajan, S., Legon, T., Martin, O., Pharabod, A., Proulx, S.: Making room for numbers in self-care: a sociology of self-tracking and quantification practices at different stages of life. Réseaux 216(4), 119–156 (2019)CrossRefGoogle Scholar
  6. 6.Elias, E., Bobillier Chaumon, M.-E., Vacher, M.: Methods to design home support for elders. In: Zhou, J., Salvendy, G. (eds.) ITAP 2018. LNCS, vol. 10927, pp. 276–289. Springer, Cham (2018). Scholar
  7. 7.Helliwell, J.F., Putnam, R.D.: The social context of wellbeing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359(1449), 14351446 (2004)Google Scholar
  8. 8.Hem, C.: Le téléphone: un artefact témoin du bien-être des personnes-âgées. Ph.D. thesis in Psychology, Grenoble Alpes University (2015)Google Scholar
  9. 9.Karout, P.: Service vigilance solution de veille préventive à distance pour l’accompagnement à domicile de personnes en perte d’autonomie. Gérontologie et société, 113(2), 37–50 (2005)Google Scholar
  10. 10.Kon, B., Lam, A., Chan, J.: Evolution of smart homes for the elderly. In: IW3C2, Perth, Australia, 3–7 April 2017. ACM (2017)Google Scholar
  11. 11.Lupton, D.: The diverse domains of quantified selves: self-tracking modes and dataveillance. Econ. Soc. 45(1), 101–122 (2016)Google Scholar
  12. 12.Madan, A., Cebrian, M., Lazer, D., Pentland, A.: Social sensing for epidemiological behavior change. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, pp. 291–300. ACM (2010)Google Scholar
  13. 13.Noury, N., Hadidi, T.: Computer simulation of the activity of the elderly person living independently in a Health Smart Home. Comput. Meth. Prog. Biomed. 108(3), 1216–1228 (2012)CrossRefGoogle Scholar
  14. 14.Silva, T., Abreu, J., Antunes, M., Almeida, P., Silva, V., Santinha, G.: +TV4E: interactive television as a support to push information about social services to the elderly. In: CENTERIS (2016)Google Scholar
  15. 15.Spini, D., Ghisletta, P., Guilley, E., Lalive d’Epinay, C.: Frail elderly. In: Birren, J.E. (ed.) Encyclopedia of Gerontology. Elsevier (2007)Google Scholar
  16. 16.Wolf, G.: The quantified self: reverse engineering. In: Nafus, D. (ed.) Quantified: Biosensing Technologies in Everyday Life. The MIT Press, Cambridge (2016)Google Scholar

The SELF Institute