Author(s):

Daniele Rav

Charence Wong

Fani Deligianni

Melissa Berthelot

Javier Andreu-Perez

Benny Lo

Guang-Zhong Yang

Abstract:

With a massive influx of multimodality data, the role of data analytics in health informatics has grown rapidly in the last decade. This has also prompted increasing interests in the generation of analytical, data driven models based on machine learning in health informatics. Deep learning, a technique with its foundation in artificial neural networks, is emerging in recent years as a powerful tool for machine learning, promising to reshape the future of artificial intelligence. Rapid improvements in computational power, fast data storage, and parallelization have also contributed to the rapid uptake of the technology in addition to its predictive power and ability to generate automatically optimized high-level features and semantic interpretation from the input data. This article presents a comprehensive up-to-date review of research employing deep learning in health informatics, providing a critical analysis of the relative merit, and potential pitfalls of the technique as well as its future outlook. The paper mainly focuses on key applications of deep learning in the fields of translational bioinformatics, medical imaging, pervasive sensing, medical informatics, and public health.

Documentation:

http://10.1109/JBHI.2016.2636665

References:

1.H. R. Roth et al., “Improving computer-aided detection using convolutional neural networks and random view aggregation”, IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1170-1181, May 2016.Show in Context Google Scholar 2.R. Fakoor, F. Ladhak, A. Nazi and M. Huber, “Using deep learning to enhance cancer diagnosis and classification”, Proc. Int. Conf. Mach. Learn., pp. 1-7, 2013.Show in Context Google Scholar 3.B. Alipanahi, A. Delong, M. T. Weirauch and B. J. Frey, “Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning”, Nature Biotechnol., vol. 33, pp. 831-838, 2015.Show in Context CrossRef Google Scholar 4.Y. LeCun, Y. Bengio and G. Hinton, “Deep learning”, Nature, vol. 521, no. 7553, pp. 436-444, 2015.Show in Context CrossRef Google Scholar 5.G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks”, Science, vol. 313, no. 5786, pp. 504-507, 2006.Show in Context CrossRef Google Scholar 6.C. Poultney et al., “Efficient learning of sparse representations with an energy-based model”, Proc. Adv. Neural Inf. Process. Syst., pp. 1137-1144, 2006.Show in Context Google Scholar 7.P. Vincent, H. Larochelle, Y. Bengio and P.-A. Manzagol, “Extracting and composing robust features with denoising autoencoders”, Proc. Int. Conf. Mach. Learn., pp. 1096-1103, 2008.Show in Context Google Scholar 8.S. Rifai, P. Vincent, X. Muller, X. Glorot and Y. Bengio, “Contractive auto-encoders: Explicit invariance during feature extraction”, Proc. Int. Conf. Mach. Learn., pp. 833-840, 2011.Show in Context Google Scholar 9.J. Masci, U. Meier, D. Cireşan and J. Schmidhuber, “Stacked convolutional auto-encoders for hierarchical feature extraction”, Proc. Int. Conf. Artif. Neural Netw., pp. 52-59, 2011.Show in Context Google Scholar 10.G. E. Hinton, S. Osindero and Y.-W. Teh, “A fast learning algorithm for deep belief nets”, Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.Show in Context CrossRef Google Scholar 11.R. Salakhutdinov and G. E. Hinton, Proc. Int. Conf. Artif. Intell. Stat., vol. 1, 2009.Show in Context Google Scholar 12.L. Younes, “On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates”, Stochastics: An Int. J. Probab. Stochastic Process., vol. 65, no. 3/4, pp. 177-228, 1999.Show in Context CrossRef Google Scholar 13.R. J. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent neural networks”, Neural Comput., vol. 1, no. 2, pp. 270-280, 1989.Show in Context CrossRef Google Scholar 14.Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document recognition”, Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.Show in Context View Article Full Text: PDF (886KB) Google Scholar 15.D. H. Hubel and T. N. Wiesel, “Receptive fields binocular interaction and functional architecture in the cat’s visual cortex”, J. Physiol., vol. 160, no. 1, pp. 106-154, 1962.Show in Context CrossRef Google Scholar 16.A. Krizhevsky, I. Sutskever and G. E. Hinton, “Imagenet classification with deep convolutional neural networks”, Proc. Adv. Neural Inf. Process. Syst., pp. 1097-1105, 2012.Show in Context Google Scholar 17.M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks”, Proc. Eur. Conf. Comput. Vision, pp. 818-833, 2014.Show in Context Google Scholar 18.C. Szegedy et al., “Going deeper with convolutions”, Proc. Conf. Comput. Vis. Pattern Recognit., pp. 1-9, 2015.Show in Context Google Scholar 19.R. Frank, “The perceptron a perceiving and recognizing automaton”, 1957.Show in Context Google Scholar 20.J. L. McClelland et al., Parallel distributed processing., Cambridge, MA, USA:MIT Press, vol. 2, 1987.Show in Context Google Scholar 21.D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning representations by back-propagating errors” in Neurocomputing: Foundations of Research, Cambridge, MA, USA:MIT Press, pp. 696-699, 1988.Show in Context Google Scholar 22.J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le and A. Y. Ng, “On optimization methods for deep learning”, Proc. Int. Conf. Mach. Learn., pp. 265-272, 2011.Show in Context Google Scholar 23.P. Domingos, “A few useful things to know about machine learning”, Commun. ACM, vol. 55, no. 10, pp. 78-87, 2012. Google Scholar 24.V. N. Vapnik, “An overview of statistical learning theory”, IEEE Trans. Neural Netw., vol. 10, no. 5, pp. 988-999, Sep. 1999. View Article Full Text: PDF (270KB) Google Scholar 25.C. M. Bishop, “Pattern recognition”, Mach. Learn., vol. 128, pp. 1-737, 2006.Show in Context Google Scholar 26.Y. Bengio, P. Simard and P. Frasconi, “Learning long-term dependencies with gradient descent is difficult”, IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.Show in Context View Article Full Text: PDF (1180KB) Google Scholar 27.S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.Show in Context CrossRef Google Scholar 28.“Caffe”, 2016, [online] Available: http://caffe.berkeleyvision.org/. Google Scholar 29.“Cntk”, 2016, [online] Available: https://github.com/Microsoft/CNTK. Google Scholar 30.“Deeplearning4j”, 2016, [online] Available: http://deeplearning4j.org/. Google Scholar 31.“Wolfram math”, 2016, [online] Available: https://www.wolfram.com/mathematica/.Show in Context Google Scholar 32.“Tensorflow”, 2016, [online] Available: https://www.tensorflow.org/. Google Scholar 33.“Theano”, 2016, [online] Available: http://deeplearning.net/software/theano/. Google Scholar 34.R. Collobert, K. Kavukcuoglu and C. Farabet, “Torch”, 2016, [online] Available: http://http://torch.ch/. Google Scholar 35.“Keras”, 2016, [online] Available: https://keras.io/. Google Scholar 36.“Neon”, 2016, [online] Available: https://github.com/NervanaSystems/neon.Show in Context Google Scholar 37.D. Ackely, G. Hinton and T. Sejnowski, “Learning and relearning in boltzman machines”, Parallel Distributed Processing: Explorations in Microstructure of Cognition., pp. 282-317, 1986.Show in Context Google Scholar 38.H. Wang and D.-Y. Yeung, “Towards Bayesian deep learning: A survey”, Apr. 2016.Show in Context Google Scholar 39.J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference., San Mateo, CA, USA:Morgan Kaufmann, 2014.Show in Context Google Scholar 40.M. A. Carreira-Perpinan and G. Hinton, “On contrastive divergence learning.”, Proc. Int. Conf. Artif. Intell. Stat., pp. 33-40, vol. 10.Show in Context Google Scholar 41.Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu and M. S. Lew, “Deep learning for visual understanding: A review”, Neurocomput., vol. 187, pp. 27-48, 2016.Show in Context CrossRef Google Scholar 42.K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition”, CoRR, vol. abs/1409.1556, 2014, [online] Available: http://arxiv.org/abs/1409.1556.Show in Context Google Scholar 43.H. Lee, R. Grosse, R. Ranganath and A. Y. Ng, “Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations”, Proc. Int. Conf. Mach. Learn., pp. 609-616, 2009.Show in Context Google Scholar 44.“Nvidia dgx-1”, 2016, [online] Available: http://www.nvidia.com/object/deep-learning-system.html.Show in Context Google Scholar 45.L. A. Pastur-Romay, F. Cedrón, A. Pazos and A. B. Porto-Pazos, “Deep artificial neural networks and neuromorphic chips for big data analysis: Pharmaceutical and bioinformatics applications”, Int. J. Molecular Sci., vol. 17, no. 8, 2016.Show in Context CrossRef Google Scholar 46.R. Ibrahim, N. A. Yousri, M. A. Ismail and N. M. El-Makky, “Multi-level gene/mirna feature selection using deep belief nets and active learning”, Proc. Eng. Med. Biol. Soc., pp. 3957-3960, 2014.Show in Context View Article Full Text: PDF (670KB) Google Scholar 47.M. Khademi and N. S. Nedialkov, “Probabilistic graphical models and deep belief networks for prognosis of breast cancer”, Proc. IEEE 14th Int. Conf. Mach. Learn. Appl., pp. 727-732, 2015.Show in Context View Article Full Text: PDF (297KB) Google Scholar 48.D. Quang, Y. Chen and X. Xie, “Dann: A deep learning approach for annotating the pathogenicity of genetic variants”, Bioinformatics, vol. 31, pp. 761-763, 2014.Show in Context CrossRef Google Scholar 49.B. Ramsundar, S. Kearnes, P. Riley, D. Webster, D. Konerding and V. Pande, “Massively multitask networks for drug discovery”, Feb. 2015.Show in Context Google Scholar 50.S. Zhang et al., “A deep learning framework for modeling structural features of rna-binding protein targets”, Nucleic Acids Res., vol. 44, no. 4, pp. e32-e32, 2016.Show in Context CrossRef Google Scholar 51.K. Tian, M. Shao, S. Zhou and J. Guan, “Boosting compound-protein interaction prediction by deep learning”, Proc. IEEE Int. Conf. Bioinformat. Biomed., pp. 29-34, 2015. CrossRef Google Scholar 52.C. Angermueller, H. Lee, W. Reik and O. Stegle, “Accurate prediction of single-cell dna methylation states using deep learning”, bioRxiv, 2016.Show in Context Google Scholar 53.J. Shan and L. Li, “A deep learning method for microaneurysm detection in fundus images”, Proc. IEEE Connected Health Appl. Syst. Eng. Technol., pp. 357-358, 2016.Show in Context View Article Full Text: PDF (379KB) Google Scholar 54.A. Mansoor et al., “Deep learning guided partitioned shape model for anterior visual pathway segmentation”, IEEE Trans. Med. Imag., vol. 35, no. 8, pp. 1856-1865, Aug. 2016.Show in Context View Article Full Text: PDF (1349KB) Google Scholar 55.D. Nie, H. Zhang, E. Adeli, L. Liu and D. Shen, “3d deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients”, Proc. MICCAI, pp. 212-220, 2016.Show in Context CrossRef Google Scholar 56.J. Kleesiek et al., “Deep MRI brain extraction: A 3D convolutional neural network for skull stripping”, NeuroImage, vol. 129, pp. 460-469, 2016.Show in Context CrossRef Google Scholar 57.B. Jiang, X. Wang, J. Luo, X. Zhang, Y. Xiong and H. Pang, “Convolutional neural networks in automatic recognition of trans-differentiated neural progenitor cells under bright-field microscopy”, Proc. Instrum. Meas. Comput. Commun. Control, pp. 122-126, 2015.Show in Context View Article Full Text: PDF (500KB) Google Scholar 58.M. Havaei, N. Guizard, H. Larochelle and P. Jodoin, “Deep learning trends for focal brain pathology segmentation in MRI”, CoRR, vol. abs/1607.05258, 2016.Show in Context CrossRef Google Scholar 59.H.-I. Suk et al., “Hierarchical feature representation and multimodal fusion with deep learning for ad/mci diagnosis”, NeuroImage, vol. 101, pp. 569-582, 2014.Show in Context CrossRef Google Scholar 60.D. Kuang and L. He, “Classification on ADHD with deep learning”, Proc. Cloud Comput. Big Data, pp. 27-32, Nov. 2014.Show in Context View Article Full Text: PDF (287KB) Google Scholar 61.F. Li, L. Tran, K. H. Thung, S. Ji, D. Shen and J. Li, “A robust deep model for improved classification of ad/mci patients”, IEEE J. Biomed. Health Inform., vol. 19, no. 5, pp. 1610-1616, Sep. 2015.Show in Context View Article Full Text: PDF (346KB) Google Scholar 62.K. Fritscher, P. Raudaschl, P. Zaffino, M. F. Spadea, G. C. Sharp and R. Schubert, “Deep neural networks for fast segmentation of 3d medical images”, Proc. MICCAI, pp. 158-165, 2016.Show in Context CrossRef Google Scholar 63.X. Zhen, Z. Wang, A. Islam, M. Bhaduri, I. Chan and S. Li, “Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation”, Med. Image Anal., vol. 30, pp. 120-129, 2016.Show in Context CrossRef Google Scholar 64.T. Brosch et al., “Manifold learning of brain mris by deep learning”, Proc. MICCAI, pp. 633-640, 2013.Show in Context Google Scholar 65.T. Xu, H. Zhang, X. Huang, S. Zhang and D. N. Metaxas, “Multimodal deep learning for cervical dysplasia diagnosis”, Proc. MICCAI, pp. 115-123, 2016.Show in Context CrossRef Google Scholar 66.M. Avendi, A. Kheradvar and H. Jafarkhani, “A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac mri”, Med. Image Anal., vol. 30, pp. 108-119, 2016.Show in Context CrossRef Google Scholar 67.J.-s. Yu, J. Chen, Z. Xiang and Y.-X. Zou, “A hybrid convolutional neural networks with extreme learning machine for WCE image classification”, Proc. IEEE Robot. Biomimetics, pp. 1822-1827, 2015.Show in Context Google Scholar 68.H. R. Roth et al., “Anatomy-specific classification of medical images using deep convolutional nets”, Proc. IEEE Int. Symp. Biomed. Imag., pp. 101-104, 2015.Show in Context View Article Full Text: PDF (1566KB) Google Scholar 69.M. J. van Grinsven, B. van Ginneken, C. B. Hoyng, T. Theelen and C. I. Sánchez, “Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images”, IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1273-1284, May 2016.Show in Context Google Scholar 70.M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe and S. Mougiakakou, “Lung pattern classification for interstitial lung diseases using a deep convolutional neural network”, IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1207-1216, May 2016.Show in Context Google Scholar 71.Y. Cao et al., “Improving tuberculosis diagnostics using deep learning and mobile health technologies among resource-poor and marginalized communities”, IEEE Connected Health Appl. Syst. Eng. Technol., pp. 274-281, 2016.Show in Context View Article Full Text: PDF (954KB) Google Scholar 72.H. Chen et al., “Standard plane localization in fetal ultrasound via domain transferred deep neural networks”, IEEE J. Biomed. Health Inform., vol. 19, no. 5, pp. 1627-1636, Sep. 2015.Show in Context View Article Full Text: PDF (5377KB) Google Scholar 73.H.-C. Shin et al., “Deep convolutional neural networks for computer-aided detection: CNN architectures dataset characteristics and transfer learning”, IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285-1298, May 2016.Show in Context Google Scholar 74.N. Tajbakhsh et al., “Convolutional neural networks for medical image analysis: Full training or fine tuning”, IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1299-1312, May 2016.Show in Context Google Scholar 75.Z. Yan et al., “Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition”, IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1332-1343, May 2016.Show in Context Google Scholar 76.H. Greenspan, B. van Ginneken and R. M. Summers, “Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique”, IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1153-1159, May 2016.Show in Context View Article Full Text: PDF (786KB) Google Scholar 77.J.-Z. Cheng et al., “Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in us images and pulmonary nodules in ct scans”, Sci. Rep., vol. 6, 2016.Show in Context CrossRef Google Scholar 78.T. Kondo, J. Ueno and S. Takao, “Medical image recognition of abdominal multi-organs by hybrid multi-layered GMDH-type neural network using principal component-regression analysis”, Proc. 2nd Int. Symp. Comput. Netw., pp. 157-163, 2014.Show in Context View Article Full Text: PDF (277KB) Google Scholar 79.T. Kondo, U. Junji and S. Takao, “Hybrid feedback GMDH-type neural network using principal component-regression analysis and its application to medical image recognition of heart regions”, Proc. Joint 7th Int. Conf. Adv. Intell. Syst. 15th Int. Symp. Soft Comput. Intell. Syst., pp. 1203-1208, 2014.Show in Context View Article Full Text: PDF (419KB) Google Scholar 80.T. Kondo, S. Takao and J. Ueno, “The 3-dimensional medical image recognition of right and left kidneys by deep GMDH-type neural network”, Proc. Int. Conf. Intell. Informat. Biomed. Sci., pp. 313-320, 2015.Show in Context View Article Full Text: PDF (934KB) Google Scholar 81.T. Kondo, J. Ueno and S. Takao, “Medical image diagnosis of lung cancer by deep feedback GMDH-type neural network”, Robot. Netw. Artif. Life, vol. 2, no. 4, pp. 252-257, 2016.Show in Context CrossRef Google Scholar 82.D. C. Rose, I. Arel, T. P. Karnowski and V. C. Paquit, “Applying deep-layered clustering to mammography image analytics”, Proc. Biomed. Sci. Eng. Conf., pp. 1-4, 2010.Show in Context Google Scholar 83.Y. Zhou and Y. Wei, “Learning hierarchical spectral-spatial features for hyperspectral image classification”, IEEE Trans. Cybern., vol. 46, no. 7, pp. 1667-1678, Jul. 2016.Show in Context View Article Full Text: PDF (2346KB) Google Scholar 84.J. Lerouge, R. Herault, C. Chatelain, F. Jardin and R. Modzelewski, “Ioda: an input/output deep architecture for image labeling”, Pattern Recognit., vol. 48, no. 9, pp. 2847-2858, 2015.Show in Context CrossRef Google Scholar 85.J. Wang, J. D. MacKenzie, R. Ramachandran and D. Z. Chen, “A deep learning approach for semantic segmentation in histology tissue images”, Proc. MICCAI, pp. 176-184, 2016.Show in Context CrossRef Google Scholar 86.X. Jia, K. Li, X. Li and A. Zhang, “A novel semi-supervised deep learning framework for affective state recognition on eeg signals”, Proc. Int. Conf. Bioinformat. Bioeng., pp. 30-37, 2014.Show in Context Google Scholar 87.Y. Yan, X. Qin, Y. Wu, N. Zhang, J. Fan and L. Wang, “A restricted Boltzmann machine based two-lead electrocardiography classification”, Proc. 12th Int. Conf. Wearable Implantable Body Sens. Netw., pp. 1-9, Jun. 2015.Show in Context View Article Full Text: PDF (776KB) Google Scholar 88.A. Wang, C. Song, X. Xu, F. Lin, Z. Jin and W. Xu, “Selective and compressive sensing for energy-efficient implantable neural decoding”, Proc. Biomed. Circuits Syst. Conf., pp. 1-4, Oct. 2015.Show in Context View Article Full Text: PDF (1082KB) Google Scholar 89.D. Wulsin, J. Blanco, R. Mani and B. Litt, “Semi-supervised anomaly detection for eeg waveforms using deep belief nets”, Proc. 9th Int. Conf. Mach. Learn. Appl., pp. 436-441, Dec. 2010.Show in Context Google Scholar 90.L. Sun, K. Jia, T.-H. Chan, Y. Fang, G. Wang and S. Yan, “DL-SFA: Deeply-learned slow feature analysis for action recognition”, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 2625-2632, 2014.Show in Context Google Scholar 91.C.-D. Huang, C.-Y. Wang and J.-C. Wang, “Human action recognition system for elderly and children care using three stream convnet”, Proc. Int. Conf. Orange Technol., pp. 5-9, 2015.Show in Context View Article Full Text: PDF (2694KB) Google Scholar 92.M. Zeng et al., “Convolutional neural networks for human activity recognition using mobile sensors”, Proc. MobiCASE, pp. 197-205, Nov. 2014.Show in Context CrossRef Google Scholar 93.S. Ha, J. M. Yun and S. Choi, “Multi-modal convolutional neural networks for activity recognition”, Proc. Int. Conf. Syst. Man Cybern., pp. 3017-3022, Oct. 2015.Show in Context Google Scholar 94.H. Yalçın, “Human activity recognition using deep belief networks”, Proc. Signal Process. Commun. Appl. Conf., pp. 1649-1652, 2016.Show in Context Google Scholar 95.S. Choi, E. Kim and S. Oh, “Human behavior prediction for smart homes using deep learning”, Proc. IEEE RO-MAN, pp. 173-179, Aug. 2013.Show in Context Google Scholar 96.D. Ravi, C. Wong, B. Lo and G. Z. Yang, “Deep learning for human activity recognition: A resource efficient implementation on low-power devices”, Proc. 13th Int. Conf. Wearable Implantable Body Sens. Netw., pp. 71-76, Jun. 2016.Show in Context Google Scholar 97.M. Poggi and S. Mattoccia, “A wearable mobility aid for the visually impaired based on embedded 3d vision and deep learning”, Proc. IEEE Symp. Comput. Commun., pp. 208-213, 2016.Show in Context Google Scholar 98.J. Huang, W. Zhou, H. Li and W. Li, “Sign language recognition using real-sense”, Proc. IEEE ChinaSIP, pp. 166-170, 2015.Show in Context View Article Full Text: PDF (374KB) Google Scholar 99.P. Pouladzadeh, P. Kuhad, S. V. B. Peddi, A. Yassine and S. Shirmohammadi, “Food calorie measurement using deep learning neural network”, Proc. IEEE Int. Instrum. Meas. Technol. Conf. Proc., pp. 1-6, 2016.Show in Context Google Scholar 100.P. Kuhad, A. Yassine and S. Shimohammadi, “Using distance estimation and deep learning to simplify calibration in food calorie measurement”, Proc. IEEE Int. Conf. Comput. Intell. Virtual Environ. Meas. Syst. Appl., pp. 1-6, 2015.Show in Context View Article Full Text: PDF (1003KB) Google Scholar 101.Z. Che, S. Purushotham, R. Khemani and Y. Liu, “Distilling knowledge from deep networks with applications to healthcare domain”, Dec. 2015.Show in Context Google Scholar 102.R. Miotto, L. Li, B. A. Kidd and J. T. Dudley, “Deep patient: An unsupervised representation to predict the future of patients from the electronic health records”, Sci. Rep., vol. 6, pp. 1-10, 2016.Show in Context CrossRef Google Scholar 103.L. Nie, M. Wang, L. Zhang, S. Yan, B. Zhang and T. S. Chua, “Disease inference from health-related questions via sparse deep learning”, IEEE Trans. Knowl. Data Eng, vol. 27, no. 8, pp. 2107-2119, Aug. 2015.Show in Context View Article Full Text: PDF (535KB) Google Scholar 104.S. Mehrabi et al., “Temporal pattern and association discovery of diagnosis codes using deep learning”, Proc. Int. Conf. Healthcare Informat., pp. 408-416, Oct. 2015.Show in Context Google Scholar 105.H. Shin, L. Lu, L. Kim, A. Seff, J. Yao and R. M. Summers, “Interleaved text/image deep mining on a large-scale radiology database for automated image interpretation”, CoRR, vol. abs/1505.00670, 2015.Show in Context Google Scholar 106.Z. C. Lipton, D. C. Kale, C. Elkan and R. C. Wetzel, “Learning to diagnose with LSTM recurrent neural networks”, CoRR, vol. abs/1511.03677, 2015.Show in Context Google Scholar 107.Z. Liang, G. Zhang, J. X. Huang and Q. V. Hu, “Deep learning for healthcare decision making with emrs”, Proc. Int. Conf. Bioinformat. Biomed., pp. 556-559, 2014.Show in Context View Article Full Text: PDF (677KB) Google Scholar 108.E. Putin et al., “Deep biomarkers of human aging: Application of deep neural networks to biomarker development”, Aging, vol. 8, no. 5, pp. 1-021, 2016.Show in Context Google Scholar 109.J. Futoma, J. Morris and J. Lucas, “A comparison of models for predicting early hospital readmissions”, J. Biomed. Informat., vol. 56, pp. 229-238, 2015.Show in Context CrossRef Google Scholar 110.B. T. Ong, K. Sugiura and K. Zettsu, “Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting pm2. 5”, Neural Comput. Appl., vol. 27, pp. 1-14, 2015.Show in Context Google Scholar 111.N. Phan, D. Dou, B. Piniewski and D. Kil, “Social restricted Boltzmann machine: Human behavior prediction in health social networks”, Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining, pp. 424-431, Aug. 2015.Show in Context Google Scholar 112.R. L. Kendra, S. Karki, J. L. Eickholt and L. Gandy, “Characterizing the discussion of antibiotics in the Twittersphere: What is the bigger picture”, J. Med. Internet Res., vol. 17, no. 6, 2015.Show in Context CrossRef Google Scholar 113.B. Felbo, P. Sundsøy, A. Pentland, S. Lehmann and Y.-A. de Montjoye, “Using deep learning to predict demographics from mobile phone metadata”, Feb. 2016.Show in Context Google Scholar 114.B. Zou, V. Lampos, R. Gorton and I. J. Cox, “On infectious intestinal disease surveillance using social media content”, Proc. 6th Int. Conf. Digit. Health Conf., pp. 157-161, 2016.Show in Context Google Scholar 115.V. R. K. Garimella, A. Alfayad and I. Weber, “Social media image analysis for public health”, Proc. CHIConf. Human Factors Comput. Syst., pp. 5543-5547, 2016.Show in Context Google Scholar 116.L. Zhao, J. Chen, F. Chen, W. Wang, C.-T. Lu and N. Ramakrishnan, “Simnest: Social media nested epidemic simulation via online semi-supervised deep learning”, Proc. IEEE Int. Conf. Data Mining, pp. 639-648, 2015.Show in Context Google Scholar 117.E. Horvitz and D. Mulligan, “Data privacy and the greater good”, Science, vol. 349, no. 6245, pp. 253-255, 2015.Show in Context CrossRef Google Scholar 118.J. C. Venter et al., “The sequence of the human genome”, Science, vol. 291, no. 5507, pp. 1304-1351, 2001.Show in Context CrossRef Google Scholar 119.E. S. Lander et al., “Initial sequencing and analysis of the human genome”, Nature, vol. 409, no. 6822, pp. 860-921, 2001.Show in Context CrossRef Google Scholar 120.L. Hood and S. H. Friend, “Predictive personalized preventive participatory (p4) cancer medicine”, Nature Rev. Clin. Oncol., vol. 8, no. 3, pp. 184-187, 2011.Show in Context CrossRef Google Scholar 121.M. K. Leung, A. Delong, B. Alipanahi and B. J. Frey, “Machine learning in genomic medicine: A review of computational problems and data sets”, Proc. IEEE, vol. 104, no. 1, pp. 176-197, Jan. 2016.Show in Context View Article Full Text: PDF (2848KB) Google Scholar 122.C. Angermueller, T. Pärnamaa, L. Parts and O. Stegle, “Deep learning for computational biology”, Molecular Syst. Biol., vol. 12, no. 7, 2016.Show in Context CrossRef Google Scholar 123.S. Kearnes, K. McCloskey, M. Berndl, V. Pande and P. Riley, “Molecular graph convolutions: moving beyond fingerprints”, J. Comput. Aided Mol. Des., vol. 30, no. 8, pp. 595-608, 2016.Show in Context CrossRef Google Scholar 124.E. Gawehn, J. A. Hiss and G. Schneider, “Deep learning in drug discovery”, Molecular Informat., vol. 35, no. 1, pp. 3-14, 2016.Show in Context CrossRef Google Scholar 125.H. Hampel, S. Lista and Z. S. Khachaturian, “Development of biomarkers to chart all alzheimer?s disease stages: The royal road to cutting the therapeutic gordian knot”, Alzheimer’s Dementia, vol. 8, no. 4, pp. 312-336, 2012.Show in Context CrossRef Google Scholar 126.V. Marx, “Biology: The big challenges of big data”, Nature, vol. 498, no. 7453, pp. 255-260, 2013.Show in Context CrossRef Google Scholar 127.S. Ekins, “The next era: Deep learning in pharmaceutical research”, Pharmaceutical Res., vol. 33, no. 11, pp. 2594-2603, 2016.Show in Context CrossRef Google Scholar 128.D. de Ridder, J. de Ridder and M. J. Reinders, “Pattern recognition in bioinformatics”, Briefings Bioinformat., vol. 14, no. 5, pp. 633-647, 2013. CrossRef Google Scholar 129.Y. Bengio, “Practical recommendations for gradient-based training of deep architectures” in Neural Networks: Tricks of the Trade., New York, NY, USA:Springer, pp. 437-478, 2012.Show in Context Google Scholar 130.H. Y. Xiong et al., “The human splicing code reveals new insights into the genetic determinants of disease”, Science, vol. 347, no. 6218, 2015.Show in Context CrossRef Google Scholar 131.W. Zhang et al., “Deep convolutional neural networks for multi-modality isointense infant brain image segmentation”, NeuroImage, vol. 108, pp. 214-224, 2015.Show in Context CrossRef Google Scholar 132.Y. Zheng, D. Liu, B. Georgescu, H. Nguyen and D. Comaniciu, “3d deep learning for efficient and robust landmark detection in volumetric data”, Proc. MICCAI, pp. 565-572, 2015.Show in Context Google Scholar 133.A. Jamaludin, T. Kadir and A. Zisserman, “Spinenet: Automatically pinpointing classification evidence in spinal MRIS”, Proc. MICCAI, pp. 166-175, 2016.Show in Context CrossRef Google Scholar 134.C. Hu, R. Ju, Y. Shen, P. Zhou and Q. Li, “Clinical decision support for alzheimer’s disease based on deep learning and brain network”, Proc. Int. Conf. Commun., pp. 1-6, May 2016.Show in Context Google Scholar 135.F. C. Ghesu et al., “Marginal space deep learning: Efficient architecture for volumetric image parsing”, IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1217-1228, May 2016.Show in Context Google Scholar 136.G.-Z. Yang, Body Sensor Networks, New York, NY, USA:Springer, 2014.Show in Context CrossRef Google Scholar 137.A. E. W. Johnson, M. M. Ghassemi, S. Nemati, K. E. Niehaus, D. A. Clifton and G. D. Clifford, “Machine learning and decision support in critical care”, Proc. IEEE, vol. 104, no. 2, pp. 444-466, Feb. 2016.Show in Context View Article Full Text: PDF (1119KB) Google Scholar 138.J. Andreu-Perez, C. C. Y. Poon, R. D. Merrifield, S. T. C. Wong and G. Z. Yang, “Big data for health”, IEEE J. Biomed. Health Informat., vol. 19, no. 4, pp. 1193-1208, Jul. 2015.Show in Context View Article Full Text: PDF (870KB) Google Scholar 139.G.-Z. Yang and D. R. Leff, “Big data for precision medicine”, Engineering, vol. 1, no. 3, 2015.Show in Context Google Scholar 140.T. Huang, L. Lan, X. Fang, P. An, J. Min and F. Wang, “Promises and challenges of big data computing in health sciences”, Big Data Res., vol. 2, no. 1, pp. 2-11, 2015.Show in Context CrossRef Google Scholar 141.D. Erhan, Y. Bengio, A. Courville and P. Vincent, “Visualizing higher-layer features of a deep network”, 2009.Show in Context Google Scholar 142.D. Erhan, A. Courville and Y. Bengio, “Understanding representations learned in deep architectures”, 2010.Show in Context Google Scholar 143.N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting.”, J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.Show in Context Google Scholar 144.A. Nguyen, J. Yosinski and J. Clune, “Deep neural networks are easily fooled: High confidence predictions for unrecognizable images”, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 427-436, 2015.Show in Context Google Scholar 145.C. Szegedy et al., “Intriguing properties of neural networks”, CoRR, vol. abs/1312.6199, 2013, [online] Available: http://dblp.uni-trier.de/db/journals/corr/corr1312.html#SzegedyZSBEGF13.Show in Context Google Scholar

The SELF Institute